
Team # apmcm2104264

Team Number: apmcm2104264

Problem Chosen: A

2021 APMCM summary sheet

In today’s era, people’s accuracy of workpieces and parts has reached a new height,

which also leads to a rise in the accuracy requirements of measuring devices. The

measurement application is also slowly transitioning from manual caliper measurement

application to digital image measurement application. Workpiece size is one of the most

important data contents of workpiece. Different from the traditional direct measurement

by manual caliper, digital image measurement needs to take pictures of the workpiece

first, then extract the contour of the workpiece from the image, and cooperate with the

point matrix of the calibration image to obtain the dimension data of the workpiece.

For this problem, we first need to preprocess the captured image so that the next

work can be carried out better. We use two-dimensional convolution to reduce the

impact of noise on contour recognition, and use graying algorithm and binarization

method to better adapt the image to the next contour extraction. Next, the coordinates of

contour points are obtained by using the contour extraction algorithm of binary image.

Next, according to the preset calibration plate, we can convert the actual size of the

workpiece.

Based on the methods mentioned above, we establish the model of image measure-

ment, test it with some pictures, and record the test results as a table.

Keywords: Digital Image Processing 2-d convolution Contour Detection

Team # apmcm2104264

Contents

1. Introduction. 1
1 . 1 Problem Background. 1

1 . 2 Our work . 1

2. The Description of the Problem. 2
2 . 1 How do we approximate the whole course of ?. 2

2 . 2 How do we define the optimal configuration?. 2

2 . 3 The local optimization and the overall optimization. 3

3. Analysis and Modelling . 3
3 . 1 image enhancement and smoothing base on 2-d convolution 3

3 . 2 image graying model . 6

3 . 3 Image binaryzation . 8

3 . 4 Contour detection algorithm . 9

3 . 4 . 1 Terms,Definitions and Symbols . 9

3 . 4 . 2 Contour extraction algorithm . 11

3 . 4 . 3 Hough transform . 13

4. Calculation method and process . 15
4 . 1 Contour extraction of binary image. 15

4 . 2 Computer ranging based on digital image. 20

4 . 3 Contour type detection . 20

5. Conclusions . 21
6. Future Work . 21
7. References . 21
8. Appendix . 23

Team # apmcm2104264 Page 1 of 26

I. Introduction

In order to indicate the origin of problems, the following background is worth

mentioning.

1 . 1 Problem Background

In the midst of rapidly changing technology, computers have gradually begun to

replace many of the jobs around us, and our human resources have been liberated to a

great extent. There are many mechanical tasks where computers are much more effective

than people, such as the assembly of devices, short-distance transportation of materials,

and the production of parts. Due to the massive popularity of computers, the demand

for engineering parts has increased dramatically, and how to make computers shine on

top of engineering parts has become a very hot topic.

Can a computer obtain basic information such as the dimensions of a part from a

single picture? If the measurement of a device could be achieved by computer alone

with industrial accuracy, we would no longer need a lot of manpower to measure a

device manually using things like vernier calipers and spiral micrometers, and they

could have more time to do something else. For this reason, our group discussed and

tried to create programs for computerized measurement based on image recognition to

find information about edge contours and lengths from a picture.

1 . 2 Our work

Here, we have processed the images using the python language based opencv image

processing library. We first preprocessed the obtained images in terms of noise reduction,

blurring, and enhancement in order to obtain better results for image contour extraction.

We built a basic framework model for image preprocessing and contour extraction, tested

the images, and finally found the parameters (including many parameters in the noise

reduction, blurring, enhancement, and contour extraction algorithms) with relatively

good results.The overall framework of the paper is shown in Figure 1

Team # apmcm2104264 Page 2 of 26

Figure 1 : The overall framework of the paper

II. The Description of the Problem

2 . 1 How do we approximate the whole course of ?

• For the problem of contour analysis of images, the main problem we need to solve

is how to know which points are contours and thus determine the position of the

whole contour. For this we need to use the method of contour extraction for binary

images, which is the findContours function in opencv, a method based on the one

described in the article Computer Vision, Graphics, and Image Processing.

• Before running the contours algorithm, we need to do some pre-processing of

the image, and we used two-dimensional convolution for noise reduction and

enhancement, which proved to be within our expectation. The noise-reduced

image is enhanced as appropriate to avoid loss of detail due to noise reduction and

can emphasize the features of the image.

• After the contouring algorithm is run, the obtained data needs to be cleaned and

screened out of useless data, then the data is analyzed and processed, such as the

number of contours, length, location of points, types of contour lines (straight line,

circle, ellipse), and the final valid data is displayed and saved.

2 . 2 How do we define the optimal configuration?

The optimal configuration needs to ensure that the contour data we get can best

match the real situation. In the process, we need to continuously adjust and test various

Team # apmcm2104264 Page 3 of 26

parameters, then get various results, analyze the results, take the part that approximates

with the local optimum, and use that part as the parameters of this final image for the

whole image analysis process (noise reduction, enhancement, extraction of contours).

2 . 3 The local optimization and the overall optimization

• In the continuous attempts, we record the results and set an expectation, and

finally find the parameter that is closest to our predefined expectation, and use this

parameter as the local optimum.

• Finally, we try to find multiple local optima, and select the global optimal solution

that is closest to our defined expectation, and use the parameters corresponding to

this global optimal solution as the parameters for the final processing of this image.

After our tests, most of the images can be processed well by a set of parameters.

III. Analysis and Modelling

3 . 1 image enhancement and smoothing base on 2-d convolution

Two-dimensional convolution is the mathematical method of applying convolution to

a two-bit matrix, changing from a one-dimensional vector to a two-dimensional ma-

trix. The main use of two-dimensional convolution is for feature extraction of two-

dimensional information, such as image processing.

The mathematical definition of two-dimensional convolution is as follows

𝑓 (𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦) =
∫ ∞

𝜏1=−∞
𝑓 (𝜏1, 𝜏2) · 𝑔(𝑥 − 𝜏1, 𝑦 − 𝜏2)𝑑𝜏1𝑑𝜏2

Two-dimensional convolution is often encountered in image processing, and most of the

image processing uses a discrete form of two-dimensional convolution: the

𝑓 [𝑥, 𝑦] ∗ 𝑔[𝑥, 𝑦] =
∞∑︁

𝑛1=−∞

∞∑︁
𝑛2=−∞

𝑓 [𝑛1, 𝑛2] · 𝑔[𝑥 − 𝑛1, 𝑦 − 𝑛2]

The two-dimensional convolution in the actual computation process is represented by

computing and translating the convolution kernel matrix on the matrix being convolved,

multiplying the elements corresponding to each position in it, and then adding the results

of each operation as an element of the new matrix **Examples of two-dimensional

Team # apmcm2104264 Page 4 of 26

Figure 2 Two-dimensional convolution

convolution**

𝑀 =



3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1


𝑁 =


0 1 2

2 2 0

0 1 2


where the matrix M is the convolution matrix, N is the convolution kernel, and a matrix

R can be obtained after the convolution operation

𝑅 =


12 12 17

10 17 19

9 6 14


It can be seen that the first element of the first row of R is derived as follows

12 = 3 ∗ 0 + 3 ∗ 1 + 2 ∗ 2 + 0 ∗ 2 + 0 ∗ 2 + 1 ∗ 0 + 3 ∗ 0 + 1 ∗ 1 + 2 ∗ 2

So, the exact process of two-dimensional convolution is shown below, where the leftmost

matrix is passed through the middle convolution kernel to obtain the convolved matrix

shown on the rightmost side

The image as an input matrix can be processed by a two-dimensional convolution,

using a defined filter kernel (also called an operator, convolution kernel) to perform a

convolution on the image matrix, and the convolution matrix is the filtered image.

We mainly achieve two effects with the 2D convolution model: smoothing and

image enhancement

Team # apmcm2104264 Page 5 of 26

Smoothing: The difference between the two effects lies in the different definitions for

the convolution kernel, which can achieve different convolution effects. We use the

mean filter kernel, whose specific form is shown below

𝐾 =
1
25



5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5


Using this filtering kernel K, we convolve each 5x5 range in the image and then find the

mean value, which can do a smoothing of the image. If it is a three-channel color image,

we will convolve each channel separately in the processing, and if it is a single-channel

black-and-white image, we only need to do the two-dimensional convolution introduced

before.

enhancement: image enhancement of the convolution kernel K we use the Laplace

operator

Laplace operator is an image neighborhood enhancement algorithm derived by

second-order differentiation based on the calculation of pixel grayscale difference in the

image neighborhood. Its basic idea is that when the grayscale of the center pixel in the

neighborhood is lower than the average grayscale of other pixels in the neighborhood,

the grayscale of this center pixel should be further reduced; when it is higher than that,

the grayscale of the center pixel should be further increased, so as to achieve image

sharpening. In the implementation of the algorithm, the gradient of the central pixel in

the neighborhood is determined by finding the gradient in four or eight directions, and

summing the gradient to determine the relationship between the grayscale of the central

pixel and the grayscale of other pixels in the neighborhood, and adjusting the pixel

grayscale with the result of the gradient operation. A continuous binary function f(x,y),

whose Laplace operation is defined as de the original source link and this statement.

∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2 +
𝜕2 𝑓

𝜕𝑦2

the Laplace operator can be simplified as

𝑔(𝑖, 𝑗) = 4 𝑓 (𝑖, 𝑗) − 𝑓 (𝑖 + 1, 𝑗) − 𝑓 (𝑖 − 1, 𝑗) − 𝑓 (𝑖, 𝑗 + 1) − 𝑓 (𝑗 , 𝑗 − 1)

It can also be expressed in the form of a convolution.

𝑔(𝑖, 𝑗) =
𝑘∑︁

𝑟=−𝑘

𝑙∑︁
𝑠=−𝑙

𝑓 (𝑖 − 𝑟, 𝑗 − 𝑠)𝐻 (𝑟, 𝑠), 𝑖, 𝑗 = 0, 1, 2, · · · , 𝑁 − 1

Team # apmcm2104264 Page 6 of 26

When K=1, I=1 when H(r,s) takes the following equation, four directional template

𝐻1 =


0 −1 0

−1 4 −1

0 −1 0


The result of the convolution operation of the template can be found to be 0 when the

grayness of the pixels in the neighborhood is the same, positive when the grayness of the

center pixel is higher than the average grayness of the other pixels in the neighborhood,

and negative when the grayness of the center pixel is lower than the average grayness

of the other pixels in the neighborhood. The result of the convolution operation is

processed with an appropriate fading factor and added to the original center pixel to

achieve sharpening of the image

3 . 2 image graying model

Image grayscale refers to the original color three-channel image by grayscale processing

to make it into a single-channel grayscale image, that is, black and white images.[3]

• Convert RGB to YUV and then use Y as grayscale
opencv provides a method, which is the one we use in the processing.

First, the RGB values are mapped according to the relationship function between

RGB and YUV color space (as follows) to find the content of Y

𝑔𝑟𝑎𝑦 = 𝑌 = 0.3𝑅 + 0.59𝐺 + 0.11𝐵

Where R, G and B correspond to the three components in RGB color space,

respectively, and Y represents the value of Y in YUV color space. In the YUV color

space, Y represents the luminance, U and V are represented in the chromatogram

as horizontal and vertical coordinates, corresponding to a color, which is the

expression of the YUV color space. the value chromatogram of UV is shown in

the following figure

In opencv’s cvtColor method, use the Y approximation equal to the grayscale value,

thus achieving the grayscale transformation effect

Team # apmcm2104264 Page 7 of 26

Figure 3 YUV color space chromatography

• Maximum value graying
Maximum grayscale means that the largest of the three components of the RGB

color space is used as the output grayscale value, as expressed by the following

equation

𝑔𝑟𝑎𝑦 = 𝑚𝑎𝑥([𝐵, 𝐺, 𝑅])

• Average graying

𝑔𝑟𝑎𝑦 =
(𝐵 + 𝐺 + 𝑅)

3
• Gamma-corrected grayscale

In the RGB color space, the three RGB components are not simply linearly related

to the physical light power, but a power function relationship, where the exponent

of the power function is called the Gamma value, which is generally 2.2, and the

conversion process is called Gamma correction.

Different people have different perceptions of light power, for example, a power of

50% gray, the actual brightness perceived by the human eye is

2.2√0.5 ∗ 100% = 72.97%

So that for the grayscale values in RGB, Gamma correction is needed in order to

Team # apmcm2104264 Page 8 of 26

take into account a smaller storage range and a more balanced ratio of light to

dark. So the three RGB components cannot simply be added directly, but must be

mapped to physical optical power using a power function with an exponent of 2.2

before they can be calculated, so the formula for grayscale becomes the following

form

𝐺𝑟𝑎𝑦 =
2.2

√︂
𝑅2.2 + (1.5𝐺)2.2 + (0.6𝐵)2.2

1 + 1.52.2 + 0.62.2

As you can see from the formula, the RGB color values here are first converted

to physical optical power, and this process is called Gamma correction, which is

Gamma corrected grayscale.

3 . 3 Image binaryzation

Binarization of an image means converting a grayscale map into a binary map

according to a set criterion, which has only two colors, black (0) and white (255)

Binarization of an image can be approximated as a classifier. The process of

binarization is to traverse the entire grayscale map, mapping each pixel of the grayscale

map to a discrete interval [0,1]. If the grayscale exceeds a set threshold threshold, it

becomes 255, and vice versa, it becomes 0

• The threshold method in opencv supports several modes of binarization, the fol-

lowing modes are introduced

• THRESH_BINARY
The part larger than the threshold is set to 255 and the part smaller is set to 0

• THRESH_BINARY_INV
Larger than the prefabricated part is set to 0, smaller than the part is set to 255

Team # apmcm2104264 Page 9 of 26

• THRESH_TRUNC
Larger than the prefabricated part is set to the set threshold, smaller than the part

unchanged

• THRESH_TOZERO
The part greater than the threshold is unchanged: the part less than is set to 0

• THRESH_TOZERO_INV
The part larger than the threshold is set to 0, and the part smaller is unchanged

3 . 4 Contour detection algorithm

The contour extraction algorithm in opencv is an implementation of the con-

tour extraction algorithm described in the paper computer vision, graphics, and image

processing[1] . After learning this paper, our group briefly summarized the algorithm

and applied it to our program.

3 . 4 . 1 Terms,Definitions and Symbols

frame: The edge of an image that forms the frame of this image. if an image is 640*480,

the frame of this image is the 0th row of pixels, the 479th row of pixels, the 0th

column of pixels, and the 639th column of pixels.

Team # apmcm2104264 Page 10 of 26

0-pixel (0 pixels), 1-pixel (1 pixel): Pixels with grayscale values of 0 and 1 (0 and 255

in binarization) are called 0pixel and 1-pixel, respectively.

(𝑖, 𝑗): Denotes the element of the i-th row and j-th column of the image.

𝑓𝑖 𝑗 : Denotes the grayscale value of pixel point (𝑖, 𝑗).
0-component, 1-component: A connected field consisting of 0-pixel or 1-pixel. If

a 0-component contains a frame, the connected field is called a background,

otherwise it is called a hole.

4 (8) connected scenes: 1 pixel is 4 (8) connected, 0 pixel is 8 (4) connected.

border point: In a 4(8) connected scene, if a 1 pixel (𝑖, 𝑗) has 0 pixels (𝑝, 𝑞) present

in its 4(8) connected domain, the 1 pixel (𝑖, 𝑗) is said to be a border point.
surroundness among connected components: In a binary image, if there are 2 among

connected components named S1 and S2 and any pixel point in S1 has a pixel point

of S2 on the path from any direction (4 directions) to the frame, we called S2

surround S1. If S2 surrounds S1 and there is a border point between S2 and S1,

then S2 directly surrounds S1.

outer border and hole border: Assume the existing 1-connected domain S1,0-connected

domain S2. if S2 directly surrounds S1, the boundary between S2 and S1 is called

the outer boundary; if S1 directly surrounds S2, the edge between S2 and S1 is

called the hole boundary.

parent border: Suppose existing 1 connects domain S1 and S3,0 connects domain S2,

S2 directly surrounds S1, S3 directly surrounds S2, the boundary between S1 and

S2 is B1, the boundary between S2 and S3 is B2, then B2 is the parent boundary

of B1. If S2 is background, then the parent boundary of B1 is frame.

surroundness among borders: Fix two boundaries 𝐵0 and 𝐵𝑛, if there exists a se-

quence of boundaries B0,B1, ...,Bn, where Bk is the parent boundary of B𝒌−1,

then we say that Bn surrounds B0.

By using the above definition, the boundaries and connected domains in a picture

can be composed of the following topological relations(Figure 4)

RasterScan: Means from left to right, from top to bottom, first after scanning a line,

and then move to the start of the next line to continue line by line scanning.

starting point: The boundary start points are divided into outer boundary start points
(Figure 5(a)) and hole boundary start points (Figure 5(b)). If the point (𝑖, 𝑗)
satisfies both (a) and (b), then consider (𝑖, 𝑗) as the outer boundary start point.

NBD: A boundary can be obtained from the boundary start point (𝑖, 𝑗) with the bound-

Team # apmcm2104264 Page 11 of 26

Figure 4 Surroundness among connected components (b) and among borders (c)

Figure 5 The conditions of the border following starting point (i, j) for an outer border (a)

and among border (b)

ary tracking algorithm, and a new unique number is assigned to each newly found

boundary B. NBD denotes the number of the currently tracked boundary.

LNBD: During the raster scan, we also keep the number of the most recently encoun-

tered (previous) boundary B’, noted as LNBD.

3 . 4 . 2 Contour extraction algorithm

Suppose an image 𝐹 = 𝑓𝑖 𝑗 is input and the initial NBD is set to 1, that is, the frame
of F is considered as the first boundary. Use raster scan to scan the image F line by line,

and when the gray value of a pixel point (𝑖, 𝑗) satisfies 𝑓𝑖 𝑗 ≠ 0, perform the steps listed

below. When the scan reaches the end of a line of the image, the LNBD is reset to 1.

(1) Select one of the following cases

(a)If 𝑓𝑖 𝑗 = 1 and 𝑓𝑖, 𝑗−1 = 0 which be described by (Figure 5(a)), then (𝑖, 𝑗) is

the outer boundary start point and NBD+=1, (𝑖2, 𝑗2) ← (𝑖, 𝑗 − 1)
(b)If 𝑓𝑖 𝑗 ≥ 1 and 𝑓𝑖, 𝑗+1 = 0 which be described by (Figure 5(b)), then (i, j)

is the hole boundary start point and NBD+=1, (𝑖2, 𝑗2) ← (𝑖, 𝑗 + 1). If 𝑓𝑖 𝑗 > 1, then

𝐿𝑁𝐵𝐷 ← 𝑓𝑖 𝑗

(c)If neither case (a) nor case (b) is satisfied, proceed to step (4)

Team # apmcm2104264 Page 12 of 26

Figure 6 Descision Rule for the Parent Border of the Newly Found Border B

(2) Based on the type of the previous boundary B’ and the current newly encountered

boundary B, the parent boundary of the current boundary B can be derived from the

following table.(Figure 6)

(3) Starting from the boundary starting point (𝑖, 𝑗), track the boundary according

to the following methods ((3.1) to (3.5)).

(3.1) With (𝑖, 𝑗) as the center, (𝑖2, 𝑗2) as the starting point, look clockwise

for (𝑖, 𝑗) 4 (8) domains with non-zero pixel points. If a non-zero pixel point is found,

make (𝑖1, 𝑗1) the first non-zero pixel point clockwise, otherwise make 𝑓𝑖 𝑗 = −𝑁𝐵𝐷 and

proceed directly to step (4).

(3.2) (𝑖2, 𝑗2) ← (𝑖1, 𝑗1), (𝑖3, 𝑗3) ← (𝑖, 𝑗)
(3.3) With (𝑖3, 𝑗3) as the center, in a counterclockwise direction, to find

(𝑖2, 𝑗2) the next point as the next seven points (𝑖3, 𝑗3) whether there are non-zero pixel

points in the 4 (8) neighborhood, making (𝑖4, 𝑗4) the first non-zero pixel point in the

counterclockwise direction.

(3.4) Take the following steps:

(a) If (𝑖3, 𝑗3 + 1) is a pixel that has been checked in step (3.3) and is a 0

pixel, then 𝑓𝑖3,𝐽3 ← −𝑁𝐵𝐷.

(b) If (𝑖3, 𝑖3 + 1) is not the 0 pixel already checked in step (3.3), and

𝑓𝑖3, 𝑗3 = 1, then 𝑓𝑖3, 𝑗3 ← 𝑁𝐵𝐷.

(c) If neither case (a) nor case (b) is satisfied, then not to change the value

of 𝑓𝑖3, 𝑗3 .

(3.5) If (𝑖4, 𝑗4) = (𝑖, 𝑗) and (𝑖3, 𝑗3) = (𝑖1, 𝑗1), that means, it returns to the

starting point of the boundary, proceed to step (4), otherwise make (𝑖2, 𝑗2) ← (𝑖3, 𝑗3),

Team # apmcm2104264 Page 13 of 26

Figure 7 An illustration of the process of Algorithm

(𝑖3, 𝑗3) ← (𝑖4, 𝑗4), and then proceed to step (3.3).

(4) If 𝐹𝑖 𝑗 ≠ 1, 𝐿𝑁𝐵𝐷 ←| 𝑓𝑖 𝑗 |, continue raster scanning from point (𝑖, 𝑗 + 1), and

end scanning when scanning to the bottom right corner of the picture.

The whole algorithm can be represented by use case diagram (Figure 7).

To sum up, the contour extraction algorithm mainly detects a contour and then

tracks it to detect all the contours of the whole picture. The whole step is to scan

each pixel of the whole picture circularly, judge and deal with various situations in the

scanning, so as to realize the algorithm. The findcontours method in opencv is only an

implementation of this algorithm.

3 . 4 . 3 Hough transform

Since the value range of 𝑘 and 𝑏 is (−∞, +∞) for a straight line, an equivalent

transformation of K and B is required.

In the figure (Figure 8), 𝑟 is the shortest distance from the coordinate origin to a

straight line, and 𝜃 is the angle between the vertical line from the origin to the target

straight line and the x-axis. In this way, we can use 𝜃 and 𝑟 to replace 𝑘 and 𝑏 in the

original oblique section.

𝑘 = −cos 𝜃
sin 𝜃

𝑏 =
𝑟

sin 𝜃

Team # apmcm2104264 Page 14 of 26

Figure 8 Hough tranform

By simplifying and removing the denominator of the converted oblique section,

we can get an equation 𝑟 about 𝜃

𝑟 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃

According to the definitions of 𝑟 and 𝜃, the value of 𝑟 is [0, +∞), and the value

of 𝜃 is [0, 360). At this time, 𝜃 can be discretized. For example, the value range

of 𝜃 is defined as discrete interval [0, 90, 180, 270], and 𝑟 is divided into n intervals

[0, 1], [1, 2], [2, 3) · · · [𝑛− 1, 𝑛) in a fixed value. Then 𝜃 can be used as row index and 𝑟

as column index to form a zero matrix. We can understand this matrix as a "ballot box".

Scan the coordinates of all points and calculate them according to the discretized

𝜃 to obtain the value of 𝑟. then, 𝑟 corresponds to an interval of the divided interval, and

one value of the corresponding matrix is added, that is, "one vote".

Finally, a threshold is set. The straight line composed of the index 𝑟 and 𝜃 of the

rows and columns in the matrix exceeding this threshold can be considered as a straight

line in the graph. So as to achieve the effect of detecting a straight line.

The circle detection is also similar. Through the transformation of the equation,

build a "ballot box" of the zero matrix, then traverse each point for operation, vote for

the corresponding position in the "ballot box", and finally select the part whose number

of votes exceeds a certain threshold.

Team # apmcm2104264 Page 15 of 26

Figure 9 Original image after reading

IV. Calculation method and process

4 . 1 Contour extraction of binary image

We detect and draw the contours of the three images. We hope we can get the

contour line that matches the contour of the real object in our photo as much as possible.

In the continuous exploration of methods, we finally decided to use Python opencv as

the image processing library, because it can easily process an image. Opencv supports

a large number of image transformation and analysis methods, which is well in line with

our expectation of problem-solving methods. We hope to get a relatively simple and

clear tool for image analysis and processing.

Before the image processing, we determined our needs. We need to find the

coordinates of a series of points, which are the contour points of the object photo.

In order to get the contour points, we need to read the picture first. Of course, it is

necessary. Without the picture, no data will be analyzed by us. So we use the imread

function to read the picture and store it in a variable. In order to see the contour search

effect more intuitively in the end, we decided to draw the contour directly on the original

drawing, so that we can compare it better. In order to do this, we copy the image and

store it in another variable as the final result.

(Figure 9) is the original image after reading.

Before image processing, we need to blur and sharpen it. We use the two-

dimensional convolution model to blur and sharpen it (section 3.1).

Team # apmcm2104264 Page 16 of 26

Figure 10 Image after smoothing and sharpening

In the smoothing process, we use K1 matrix as the convolution kernel of our

smoothing process, which is a mean convolution kernel.

𝐾1 =
1
25



5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5

5 5 5 5 5


In sharpening, we use K2 matrix as our sharpening convolution kernel, which is a

Laplace operator.

𝐾2 =


0 −1 0

−1 4 −1

0 −1 0


The purpose of smoothing and sharpening is to denoise the image and extract the

eigenvalues, so as to better find the contour points.

(Figure 10) is the image after smoothing and sharpening.

The processed image uses the relationship between RGB and YUV color space to

convert each other, and takes y (brightness) directly as the gray value for a simple image

graying process (section 3.2). This is to simplify the data size, because the gray image

is a single channel, and one pixel has only one value, while the RGB image is a three

channel image, and each pixel has three values, representing R, G and B respectively.

(Figure 11) is the grayed image.

Team # apmcm2104264 Page 17 of 26

Figure 11 Grayed image

Figure 12 Binary image

For the grayed image, perform a binarization process (section 3.3). This step is to

filter the image again and change each pixel of the image from a grayscale value to 0 or

1, so as to be better applied to the contour extraction algorithm of binary image. The

method of binarization is to set a threshold and then define a processing mode. The

mode we use is above the threshold, the pixel is set to 1, and vice versa.

(Figure 12) is the binary image.

It can be seen from the figure (Figure 12) that after binarization, the contour of the

object no longer has sub-pixel contour, either 0 or 1.

So far, the image preprocessing has been completely completed. Next, only the

Team # apmcm2104264 Page 18 of 26

Figure 13 Preliminary results

contour extraction algorithm of binary image needs to be used for the binary image

(section 3.4). The principle of the algorithm is to scan the whole picture line by line,

detect itself and neighborhood of all pixels, set a variable to track the points that meet

the contour point conditions (0 pixel exists in 4 (8) neighborhood of 1 pixel), and finally

find all contour point information. Then draw a contour according to the contour points,

and finally get the contour map (Figure 13).

It can be seen that the edge of the picture is also mistakenly regarded as contour

points. This is because the algorithm assumes that the edge of the whole picture is a

circle of contour, so we need to screen out the contour points at the edge of the picture.

The data cleaning process of contour points uses a very simple cycle detection.

Firstly, the storage structure of contour points is obtained through debugging, and then it

is transformed into a multi-dimensional array. All two-dimensional vectors representing

the coordinates of contour points in the data are filtered, and the coordinates meet the

edge conditions of the picture (abscissa is equal to 0 or equal to the transverse maximum

of the picture, and ordinate is equal to 0 or equal to the longitudinal maximum of the

picture). In order to avoid the mismatch between the index and value of the element

due to the deletion of the element during the screening process, a variable called rep is

used to correct the index. Finally, the contour points are drawn and output, but here we

encounter a problem. When we draw the contour, we directly use the contour drawing

method. The drawn contour is a closed curve, which will make the picture look like the

figure (Figure 14).

This is not what we expect. In order to avoid this situation, we abandon the original

Team # apmcm2104264 Page 19 of 26

Figure 14 Middle results

Figure 15 Finally results

contour rendering method and use the method to achieve the desired effect by drawing

all contour points to replace the original contour rendering method. Facts have proved

that our ideas have been successful and fully meet our expectations.

Finally, the coordinates of contour points, the number of contour points, the number

of contours, the total length of contours and the length of each contour are recorded

separately. The problem encountered in this process is how to calculate the length of the

contour. In order to calculate the length, we calculate the length of each contour through

the contour length calculation function before data cleaning, and store it in the array.

Then, a counter similar to word frequency statistics is set to count the number of points

Team # apmcm2104264 Page 20 of 26

deleted by each contour. Because the screened contour lines are straight lines, the length

of the deleted contour is equal to the number of deleted contour points. Therefore, when

we finally output the result, we subtract the number of invalid contour points counted

by the counter from each contour based on the counter result, and output the result as

an effective contour length.

4 . 2 Computer ranging based on digital image

Through the processing method of (section 4.1), we successfully obtained various

parameter information of the contour. We need to do an operation on these parameter

information to measure the actual contour length of the object in the photo.

Because the data measured by the computer is based on digital pictures, the unit of

the measured length result is pixels, and what we need is the actual length unit, such as

mm, cm, etc. So we need to let the computer know the unit conversion rate between pixel

length and actual length. We use a dot matrix calibration plate taken at the same angle

as the object, in which the center distance between points and the radius of each point

is a predetermined length, the diameter of each point is 1mm, and the center distance

between points is 2mm. By processing the calibration plate first, the conversion rate of

pixel length and MM is obtained.

We use Hoff circle transformation to analyze the calibration plate picture, and get

the radius, perimeter and center coordinates of each point. Then the radius of all points

is averaged to obtain the pixel distance between the radius and diameter of the point.

Pixels_per_metric can be obtained by calculating the pixel distance and the actual

preset distance_ per_ Metric, in millimeters per pixel.

𝑝𝑖𝑥𝑒𝑙𝑠_𝑝𝑒𝑟_𝑚𝑒𝑡𝑟𝑖𝑐 =
𝑝𝑖𝑥𝑒𝑙_𝑙𝑒𝑛𝑔𝑡ℎ
𝑎𝑐𝑡𝑢𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ

Then the contour of the object to be measured is extracted by the method of (section

4.1), and then pixels are used for the circumference of each contour_ per_ Metric is used

for unit conversion to obtain the actual length, and the calculated length results are

recorded.

4 . 3 Contour type detection

Contour type recognition is to analyze the memory category of contour points

extracted from the picture to judge whether the contour is line segment, circle, arc

or others, so that we can better describe the whole contour. We expect to obtain

Team # apmcm2104264 Page 21 of 26

various attributes of line, circle (or arc), ellipse (or elliptical arc) from the contour point

coordinates. For ellipse, we add an attribute called rotation angle[2] , so as to fix its

standard equation into a format.

Through Hough transform, the contour points in the image can be easily fitted with

lines or circles, so as to achieve the purpose of contour type recognition.

V. Conclusions

The conclusions which we get in building our models will be listed as follows:

Conclusions of the problem: Our model basically meets the initial expectation, and

also proves that opencv can play an important role in the application of image

processing.

Methods used in our models: Image enhancement and smoothing base on 2-d con-

volution, Image graying Analysis, Image binaryzation Analysis, Edge detection

algorithm and Hough circle Transformation are used in our model.

Applications of our models: Finally, the completed model can be applied to the image

processing and contour extraction of basic pictures with small scene and less

interference.

VI. Future Work

We need to better modify and optimize the anti-interference ability of the model.

The current model can not meet the contour extraction of objects under complex lighting

conditions, which is obviously a great disadvantage of our model. Only by solving this

disadvantage can we apply the model to practical events. That is what we will do in

future.

VII. References

[1] Satoshi Suzuki and others, Topological structural analysis of digitized binary images

by border following[J], Computer Vision, Graphics, and Image Processing, 1985 ,

30(1),32–46

[2] Guiping Hu, Distinguish the centrifugal angle and rotation angle of ellipse[J],

Middle school mathematics, 2018, 15, 31-34,

Team # apmcm2104264 Page 22 of 26

[3] Programming years of Chen January《OpenCv视觉之眼》Python图像处理四

:Opencv图像灰度处理的四种方法及原理 https://blog.csdn.net/qq_

42451251/article/details/107783243, 2020.08.04

Team # apmcm2104264 Page 23 of 26

VIII. Appendix

Listing 1: The python Source code of Contour extraction of binary image and date

cleaning

import cv2 as cv

import numpy as np

import csv

image = cv.imread(’C:\\Users\\25315\\Desktop\\2021 APMCM Problem

A\\Annex 1\\Pic1_2.bmp’)

result = image.copy()

cv.imshow(’image’,image)

kernel = np.ones((5, 5), np.float32)/10

image = cv.filter2D(image, -1, kernel)

cv.imshow(’image_filter2d’,image)

imgray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

cv.imshow(’image_gray’,imgray)

ret, dst = cv.threshold(imgray, 110, 255, 0)

cv.imshow(’image_binary’,dst)

contours, hierarchy = cv.findContours(dst, cv.RETR_TREE,

cv.CHAIN_APPROX_NONE)

print(len(contours))

bgr_list = [(0, 0, 255), (0, 255, 255), (0, 255, 0), (255, 255, 0),

(255, 0, 0), (255, 0, 255)]

contours = [i for i in contours]

dealed = {}

perimeters = []

for i in contours:

perimeters.append(cv.arcLength(i, True))

print(perimeters)

for key, contour in enumerate(contours):

rep = 0

Team # apmcm2104264 Page 24 of 26

for index, value in enumerate(contour):

if value[0][0]==0 or value[0][0]==1295 or value[0][1]==971 or

value[0][1]==0:

contour = np.delete(contour, index-rep, 0)

rep += 1

dealed[str(key)] = dealed.setdefault(str(key), 0) + 1

dealed[str(key)] = dealed.setdefault(str(key), 0)

contours[key] = contour

for index, value in enumerate(contours):

perimeter = cv.arcLength(value, True)

print(f’{len(value)}, {perimeter:.4f}’)

cv.drawContours(result, [value], 0, bgr_list[index%6], 3)

total = 0

for index, contour in enumerate(contours):

with open(f’C:\\Users\\25315\\Desktop\\pic1_2\\{index+1}.csv’,

’w’, encoding=’utf-8’, newline=’’) as f:

perimeter = cv.arcLength(contour, True)

perimeter = perimeters[index]

print(f’{len(contour)}, {perimeter-dealed[str(index)]:.4f}’)

total += perimeter-dealed[str(index)]

for j in contour:

cv.circle(result, (j[0][0], j[0][1]), 2, bgr_list[index],

-1)

w = csv.writer(f)

w.writerow([j[0][0], j[0][1]])

print(dealed)

print(f’{total:.4f}’)

cv.imshow(’image_result’,result)

cv.imwrite(’C:\\Users\\25315\\Desktop\\2021 APMCM Problem A\\Annex

1\\result\\pic1_2.bmp’, result)

cv.waitKey(0)

Listing 2: The python source code of measure actual length

import cv2 as cv

import numpy as np

Team # apmcm2104264 Page 25 of 26

src = cv.imread(’C:\\Users\\25315\\Desktop\\2021 APMCM Problem

A\\Annex 2\\Pic2_1.bmp’)

img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)

cv.imshow(’origin’, src)

result = src.copy()

circles =

cv.HoughCircles(img,cv.HOUGH_GRADIENT,1,20,param1=300,param2=30,

minRadius=0,maxRadius=15)

circles = np.uint16(np.around(circles))

def avg(ls):

return int(round(sum(ls)/len(ls)))*2

pre = avg(circles[0,:][:,2])

print(pre)

image = cv.imread(’C:\\Users\\25315\\Desktop\\2021 APMCM Problem

A\\Annex 2\\Pic2_4.bmp’)

result = image.copy()

kernel = np.ones((5, 5), np.float32)/25

image = cv.filter2D(image, -1, kernel)

imgray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

ret, dst = cv.threshold(imgray, 110, 255, 0)

contours, hierarchy = cv.findContours(dst, cv.RETR_TREE,

cv.CHAIN_APPROX_NONE)

bgr_list = [(0, 0, 255), (0, 255, 255), (0, 255, 0), (255, 255, 0),

(255, 0, 0), (255, 0, 255)]

print(len(contours))

for i in contours[1:]:

print(len(i))

Team # apmcm2104264 Page 26 of 26

total = 0

for index, value in enumerate(contours[1:]):

perimeter = cv.arcLength(value, True)

print(f’{perimeter/pre:.2f}’)

total += perimeter/pre

cv.drawContours(result, [value], 0, bgr_list[index%6], 3)

print(f’{total:.2f}’)

cv.imshow(’image’,result)

cv.imwrite(’C:\\Users\\25315\\Desktop\\2021 APMCM Problem A\\Annex

2\\result\\pic2_4.bmp’, result)

cv.waitKey(0)

